Can You Really Do Chemisty Experiments About 4531-54-8

From this literature《Development and validation of stability – indicating RP-HPLC chromatographic method by forced degradation studies for azathioprine by related substances》,we know some information about this compound(4531-54-8)Synthetic Route of C4H6N4O2, but this is not all information, there are many literatures related to this compound(4531-54-8).

Most of the compounds have physiologically active properties, and their biological properties are often attributed to the heteroatoms contained in their molecules, and most of these heteroatoms also appear in cyclic structures. A Journal, International Journal of Pharmaceutical Sciences and Research called Development and validation of stability – indicating RP-HPLC chromatographic method by forced degradation studies for azathioprine by related substances, Author is Hiralben, S. Mehta; Shinghvi, Indrajeet; Raj, Hasumati A., which mentions a compound: 4531-54-8, SMILESS is NC1=C([N+]([O-])=O)N=CN1C, Molecular C4H6N4O2, Synthetic Route of C4H6N4O2.

Simple, rapid and reproducible stability-indicating methods were established for quant. determination of azathioprine using a, phenomenex 250 mm × 4.9 mm C18, 5 μm, inertsil and UV detection at 240 nm. The isocratic elution was used to quantify the analyte and the mobile phase was acetate buffer: acetonitrile: methanol (30: 35: 35) was pumped at 1.0 mL/min. The method was linear between 10-300 μg/mL, statistically validated for its linearity, precision and accuracy. In this study, degradation behavior of azathioprine was studied by subjecting the drug to various ICH stress conditions. The intra and inter day variation was found to be less than 1% showing high precision of the assay method. It was found that the excipients in the com. tablet did not interfere with the method. Developed method can routinely use for the estimation of azathioprine related compounds from the dosage form and also for stability sample.

From this literature《Development and validation of stability – indicating RP-HPLC chromatographic method by forced degradation studies for azathioprine by related substances》,we know some information about this compound(4531-54-8)Synthetic Route of C4H6N4O2, but this is not all information, there are many literatures related to this compound(4531-54-8).

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Fun Route: New Discovery of 616-14-8

From this literature《Gas chromatographic identification of alkyl radicals formed in plasma radiofrequency discharges by using iodine as a scavenger》,we know some information about this compound(616-14-8)Application In Synthesis of 1-Iodo-2-methylbutane, but this is not all information, there are many literatures related to this compound(616-14-8).

Castello, Gianrico published the article 《Gas chromatographic identification of alkyl radicals formed in plasma radiofrequency discharges by using iodine as a scavenger》. Keywords: alkyl radical identification gas chromatog; iodide alkyl gas chromatog retention; solution heat alkyl iodide.They researched the compound: 1-Iodo-2-methylbutane( cas:616-14-8 ).Application In Synthesis of 1-Iodo-2-methylbutane. Aromatic heterocyclic compounds can be divided into two categories: single heterocyclic and fused heterocyclic. In addition, there is a lot of other information about this compound (cas:616-14-8) here.

Alkyl radicals formed in low-pressure radiofrequency plasmas were identified by gas chromatog. using I as a scavenger compound Iodine vapors, injected into the glowing plasma discharge, reacted with active radicals in the gas phase, yielding various saturated alkyl iodides, that were trapped by freezing in an organic solvent and analyzed on Apiezon L and Carbowax 20M columns. Analyses carried out at different temperatures permitted the retention times and indexes to be measured and the relative molar heats of solution to be calculated

From this literature《Gas chromatographic identification of alkyl radicals formed in plasma radiofrequency discharges by using iodine as a scavenger》,we know some information about this compound(616-14-8)Application In Synthesis of 1-Iodo-2-methylbutane, but this is not all information, there are many literatures related to this compound(616-14-8).

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Something interesting about 4531-54-8

From this literature《Formation of 4(5)-aminoglyoxalines. I》,we know some information about this compound(4531-54-8)Safety of 1-Methyl-4-nitro-1H-imidazol-5-amine, but this is not all information, there are many literatures related to this compound(4531-54-8).

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Formation of 4(5)-aminoglyoxalines. I》. Authors are Balaban, Isidore E..The article about the compound:1-Methyl-4-nitro-1H-imidazol-5-aminecas:4531-54-8,SMILESS:NC1=C([N+]([O-])=O)N=CN1C).Safety of 1-Methyl-4-nitro-1H-imidazol-5-amine. Through the article, more information about this compound (cas:4531-54-8) is conveyed.

The only evidence at present that 4(5)-aminoglyoxalines are true aromatic amines is the formation, after diazotization, of colored soln with aqueous β-C10H7ONa. Reduction of 4(5)-nitro-2-methyl- and 4(5)-nitroglyoxalines with Fe and H2O, FeSO4 and NaOH, Na2S or activated Al gave no basic material. Et glyoxaline-4(5)-carboxylate and N2H4.H2O, heated on the H2O bath for 30 min., give nearly quant. glyoxaline-4(5)-carboxyhydrazide, crystallizing with 1H2O, m. 213°, reduces NH4OH-AgNO3 slowly but not Fehling solution; picrate, yellow, m. 223° (decomposition), crystallizes from 85 parts boiling H2O. With HNO3 there results glyoxaline-4(5)-carboxyazide (I), decomposes explosively at 137°; heating with H2O does not give the urea; the green solution gives an amorphous picrate, chars 230°. Boiling I with absolute EtOH for 4 hrs. gives 42.2% of 4(5)-carbethoxyaminoglyoxaline, m. 180°; picrate, golden, decomposes 210°, crystallizes from 60 parts boiling H2O; nitrate (II), decomposes 143°. I and MeOH give 50% of the corresponding carbomethoxy derivative, m. 175°; picrate, decomposes 243°. Neither derivative could be hydrolyzed by acid or alkali. II and concentrated H2SO4 give 58% of 5(4)-nitro-4(5)-carbethoxyaminoglyoxaline, m. 234° (decomposition); this could not be converted by 10% Na2CO3 into the corresponding amine. 5-Chloro-4-nitro-1-methylglyoxaline and EtOH-NH3, heated 4 hrs. at 140°, give 63.7% of the 5-NH2 derivative, yellow, m. 303° (decomposition), crystallizes from 170 parts boiling H2O; it does not form an Ac derivative, a benzylidene derivative or a picrate; after treatment with HNO2, alk. C10H7ONa gives a greenish blue color and alk. m-C6H4(OH)2 a violet color. With 16% HCl, HNO2 is liberated and α-methylamino-α-hydroxyacetamide, pale brown, m. 140°, is formed.

From this literature《Formation of 4(5)-aminoglyoxalines. I》,we know some information about this compound(4531-54-8)Safety of 1-Methyl-4-nitro-1H-imidazol-5-amine, but this is not all information, there are many literatures related to this compound(4531-54-8).

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Decrypt The Mystery Of 616-14-8

There is still a lot of research devoted to this compound(SMILES:CCC(CI)C)Formula: C5H11I, and with the development of science, more effects of this compound(616-14-8) can be discovered.

The three-dimensional configuration of the ester heterocycle is basically the same as that of the carbocycle. Compound: 1-Iodo-2-methylbutane(SMILESS: CCC(CI)C,cas:616-14-8) is researched.Computed Properties of C9H13NO2. The article 《Total Synthesis of (-)-Cylindrocyclophane F: A Yardstick for Probing New Catalytic C-C Bond-Forming Methodologies》 in relation to this compound, is published in Chemistry – A European Journal. Let’s take a look at the latest research on this compound (cas:616-14-8).

A short and efficient total synthesis of the C2-sym. (-)-cylindrocyclophane F is presented, using a cross olefin metathesis dimerization strategy for construction of the [7,7]-paracyclophane macrocycle. The synthesis of the dimerization building block includes a Pd-catalyzed sp3-sp2 Negishi cross coupling of a sterically hindered Zn-reagent with an aromatic triflate, an enantiospecific Zn-catalyzed sp3-sp3 cross coupling of an α-hydroxy ester triflate with a Grignard reagent and the application of an enantioselective Rh-catalyzed C-allylation of an electron rich arene.

There is still a lot of research devoted to this compound(SMILES:CCC(CI)C)Formula: C5H11I, and with the development of science, more effects of this compound(616-14-8) can be discovered.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

The important role of 616-14-8

There is still a lot of research devoted to this compound(SMILES:CCC(CI)C)Computed Properties of C5H11I, and with the development of science, more effects of this compound(616-14-8) can be discovered.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Characteristic group frequencies of bromo- and iodoalkanes in the cesium bromide region》. Authors are Bentley, F. F.; McDevitt, N. T.; Rozek, Adele L..The article about the compound:1-Iodo-2-methylbutanecas:616-14-8,SMILESS:CCC(CI)C).Computed Properties of C5H11I. Through the article, more information about this compound (cas:616-14-8) is conveyed.

The infrared spectra of 74 normal and branched bromo- and iodoalkanes were recorded and studied, 667-286 cm.-1 The number and position of the frequencies characteristic of the C–X stretching vibration are dependent on the rotational isomers present as well as the structure of the alkyl substituents in the vicinity of the C–X group. Conformational structures and representative spectra are presented along with correlation charts which list the C–X stretching vibration for various primary, secondary, and tertiary bromo- and iodoalkanes.

There is still a lot of research devoted to this compound(SMILES:CCC(CI)C)Computed Properties of C5H11I, and with the development of science, more effects of this compound(616-14-8) can be discovered.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

The important role of 616-14-8

There is still a lot of research devoted to this compound(SMILES:CCC(CI)C)Product Details of 616-14-8, and with the development of science, more effects of this compound(616-14-8) can be discovered.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Cerebrospinal fluid lymphocytes in experimental allergic encephalomyelitis.》. Authors are Wilkerson, L D; Lisak, R P; Zweiman, B.The article about the compound:1-Iodo-2-methylbutanecas:616-14-8,SMILESS:CCC(CI)C).Product Details of 616-14-8. Through the article, more information about this compound (cas:616-14-8) is conveyed.

We report characteristics of the cerebrospinal fluid (CSF) pleocytosis (616+/-148 cells/microliter) that occurred in guinea-pigs with definite clinical experimental allergic encephalomyelitis developing 12 to 16 days after sensitization with homologous myelin basic protein. This pleocytosis was not present in the cerebrospinal fluid of a group of animals studied when still healthy, 9 or 10 days after similar sensitization. Eighty-nine per cent of cells in the CSF pleocytosis were small lymphocytes, 8% were larger lymphocytes and the remainder mostly monocytes. Of the lymphocytes, most were E-rosetting or null cells. B-cell markers were uncommon. The cellular patterns in this CSF pleocytosis appear to be similar to those seen in some delayed hypersensitivity responses.

There is still a lot of research devoted to this compound(SMILES:CCC(CI)C)Product Details of 616-14-8, and with the development of science, more effects of this compound(616-14-8) can be discovered.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Fun Route: New Discovery of 616-14-8

There is still a lot of research devoted to this compound(SMILES:CCC(CI)C)Reference of 1-Iodo-2-methylbutane, and with the development of science, more effects of this compound(616-14-8) can be discovered.

Reference of 1-Iodo-2-methylbutane. The protonation of heteroatoms in aromatic heterocycles can be divided into two categories: lone pairs of electrons are in the aromatic ring conjugated system; and lone pairs of electrons do not participate. Compound: 1-Iodo-2-methylbutane, is researched, Molecular C5H11I, CAS is 616-14-8, about Long-chain syn-1-phenylalkane-1,3-diyl diacetates, related phenylalkane derivatives, and sec-alcohols, all possessing dominantly iso-branched chain termini, and 2/3-methyl-branched fatty acids from Primula veris L. (Primulaceae) wax. Author is Radulovic, Niko S.; Zivkovic Stosic, Milena Z..

Herein, the results of the first study of non-flavonoid constituents of aboveground surface-wax washings of Primula veris L. (Primulaceae) are presented. Chromatog. of the washings yielded a minor fraction composed of n-, iso-, and anteiso-series of long-chained syn-1-phenylalkane-1,3-diyl diacetates, 3-oxo-1-phenylalkan-1-yl acetates, 1-phenylalkane-1,3-diones, 1-hydroxy-1-phenylalkan-3-ones, sec-alcs. (2- to 10-alkanols), and n-, iso-, anteiso-, 2-methylalkanoic and 3-methylalkanoic acids; 118 of these constituents represent up to now unreported natural compounds The structural/stereochem. elucidation was accomplished by the synthesis of authentic standards, derivatization reactions, the use of gas chromatog. retention data and detailed 1D and 2D-NMR analyses of the obtained complex chromatog. fraction. Primula veris produces unusually high amounts of branched long-chained metabolites (>60%) except for the fatty acids where the percentage of branched isomers is comparable to the ones with n-chains. Noteworthy is the fact that long-chained α- and β-Me substituted fatty acids were detected herein for the first time in the kingdom Plantae.

There is still a lot of research devoted to this compound(SMILES:CCC(CI)C)Reference of 1-Iodo-2-methylbutane, and with the development of science, more effects of this compound(616-14-8) can be discovered.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Extracurricular laboratory: Synthetic route of 4531-54-8

There is still a lot of research devoted to this compound(SMILES:NC1=C([N+]([O-])=O)N=CN1C)Application In Synthesis of 1-Methyl-4-nitro-1H-imidazol-5-amine, and with the development of science, more effects of this compound(4531-54-8) can be discovered.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Diimidazoles. IV. Derivatives of 4,5-diaminoimidazole and their attempted cyclization》. Authors are Schubert, Hermann; Heydenhauss, Dieter.The article about the compound:1-Methyl-4-nitro-1H-imidazol-5-aminecas:4531-54-8,SMILESS:NC1=C([N+]([O-])=O)N=CN1C).Application In Synthesis of 1-Methyl-4-nitro-1H-imidazol-5-amine. Through the article, more information about this compound (cas:4531-54-8) is conveyed.

The preparation of a series of 1-methyl-4-nitro-5-alkylaminoimidazoles (I) is described. The catalytic hydrogenation of I and of 1-methyl-4-nitro-5-aminoimidazole (Ia) (R = H) (II) yielded unstable diamines which could neither be isolated nor cyclized. Acetylation of II gave the di-Ac derivative (III) of II. I were formylated and acetylated smoothly; hydrogenation of the products yielded stable acyl derivatives of 4,5-diaminoimidazole. (CONHMe)2 with PCl5 gave 40.8% 5-chloro-1-methylimidazole (IV), b15 90°. IV (103 g.), 100 cc. concentrated HNO3, and 400 cc. H2O evaporated, the residue added in portions at 10° to 3 times its weight of concentrated H2SO4, and the mixture heated 2 hrs. on a water bath yielded 122 g. 5-Cl analog (V) of II, m. 149-50°. V (13.2g.)in 3.5%absolute NH3EtOH heated 2 hrs. at 130-40° in a sealed tube yielded 6.3 g. II, m. 303° (decomposition) (H2O). II (5 g.) and 200 cc. Ac2O refluxed about 5 hrs. gave 5.2 g. III, m. 149.5-50.5°. V (1.62 g.) in 25 cc. 7% absolute alc. MeNH2 refluxed 3 hrs. yielded 1.45 g. Ia (R = Me) (VI), m. 156-7° (EtOH). VI (5 g.) in 50 cc. HCO2Ac kept 20 hrs. at room temperature and concentrated yielded 5 g. the N-CHO derivative (VII), m. 142.5-3.5° (EtOH). VI (10 g.) in 200 cc. Ac2O heated 1 hr. at 90-100° gave 8.2 g. the N-Ac derivative (VIII), m. 168-9° (BuOH or dioxane). V (1.62 g.) in 37 cc. 7% absolute alc. EtNH2 refluxed 3 hrs. and refrigerated overnight yielded 1.6 g. Ia (R = Et), m. 161-2° (dioxane). In the same manner were prepared the following Ia (R, m.p., and % yield given): Pr, 114-18° (dioxan-epetr. ether), 92; Bu, 101-6° (dioxane-petr. ether), 61; PhCH2, 132-3° (EtOH), 90. Also prepared was the N-Me derivative of VI, m. 94-5.5° (C6H6-petr. ether), 47% yield. II (0.76 g.) in 30 cc. 85% HCO2H hydrogenated 4 hrs. at 17°/756 mm. over 0.2 g. PtO2 yielded a black-brown oil, which treated with dilute aqueous NaOH liberated NH3. III (0.5 g.) in 45 cc. absolute BuOH hydrogenated 40 min. at 17°/770 mm. over 0.2 g. PtO2, and the resulting oily product in C6H6 treated with the stoichiometric amount picric acid yielded 1-methyl-4-amino-5-(N,N-diacetylamino)imidazole picrate, m. 160-1° (decomposition) (BuOH). The BuOH solution from a duplicate run refluxed 1.5 hrs. under argon gave only a brown, flocculent precipitate Hydrogenation of 0.5 g. VI in H2O, dilute HCl, dry dioxane, AcOH, AcOH-HCl, and Ac2O over 0.2 g. PtO2 gave only oily unstable materials. VII (0.6 g.) in 100 cc. Bu0H hydrogenated 50 min. at 18°/763 mm., and the resulting yellow oil treated in EtOH with picric acid gave the picrate of 1-methyl-4-amino-5-(N-methyl-N-formylamino)imidazole (IX), m. 173-70 (decomposition) (H2O); styphnate m. 177-8.5° (decomposition) (H2O). The BuOH solution of the crude IX refluxed 2 hrs. under argon yielded a brown, flocculent precipitate VIII (2 g.) in 120 cc. BuOH hydrogenated 1 hr. at 20°/755 mm. over 0.4 g. PtO2 yielded 1.4 g. 5-AcMeN analog (X) of IX, m. 165-6° ( PhCl); picrate m. 217-21° (decomposition) (H2O); styphnate m. 196-9° (decomposition) (H2O); HCl salt m. 225-6° (decomposition). All attempted cyclizations of X were unsuccessful. X (0.5 g.) in 3 cc. absolute HCO2H refluxed 1.5 hrs. yielded 0.4 g. 1-methyl-4-formyl-amino-5-(N-methyl-N-acetylamino)imidazole (XI), m. 154-5.5° (absolute EtOH-Et2O). X (2.1 g.) in 15 cc. AcOH refluxed 0.5 hr. yielded 1.47 g. 4-AcNH analog of XI, m. 188.5-9.5° (1:1 dioxane-PhCl); picrate m. 166-9° (EtOH); all attempted cyclizations were unsuccessful.

There is still a lot of research devoted to this compound(SMILES:NC1=C([N+]([O-])=O)N=CN1C)Application In Synthesis of 1-Methyl-4-nitro-1H-imidazol-5-amine, and with the development of science, more effects of this compound(4531-54-8) can be discovered.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

What unique challenges do researchers face in 4531-54-8

There is still a lot of research devoted to this compound(SMILES:NC1=C([N+]([O-])=O)N=CN1C)Formula: C4H6N4O2, and with the development of science, more effects of this compound(4531-54-8) can be discovered.

Formula: C4H6N4O2. Aromatic compounds can be divided into two categories: single heterocycles and fused heterocycles. Compound: 1-Methyl-4-nitro-1H-imidazol-5-amine, is researched, Molecular C4H6N4O2, CAS is 4531-54-8, about Development of a HPLC-DAD stability-indicating method and compatibility study of azathioprine and folic acid as a prerequisite for a monolayer fixed-dose combination. Author is Brusac, Edvin; Jelicic, Mario-Livio; Amidzic Klaric, Daniela; Nigovic, Biljana; Keser, Sabina; Mornar, Ana.

Adherence in chronic diseases is a major problem which can be combated by prescribing fixed-dose combinations in the therapy of the disease. Thus, a combination of azathioprine and folic acid in the treatment of inflammatory bowel disease is highly required, but prior to formulation development, chem. compatibility of the two drugs needs to be investigated. In this work, differential scanning calorimetry, isothermal stress testing, in vitro dissolution and forced degradation studies were utilized to investigate compatibility. Moreover, a stability-indicating HPLC-DAD method for the determination of parent drugs and five of their impurities was developed, validated and applied to the inhouse sample. Compatibility testing revealed no noteworthy interactions of the two drug substances. Furthermore, forced degradation showed no substantial differences between the degradation profiles of each active pharmaceutical ingredient, their mixture and the inhouse sample, further reinforcing the claim of compatibility. Lastly, the inhouse sample was analyzed: it was shown to conform to the requirements of relevant regulatory documents for all the investigated analytes, demonstrating the method’s viability for use in formulation and process development. Our results give way to the possibility of realization of said fixed-dose combination.

There is still a lot of research devoted to this compound(SMILES:NC1=C([N+]([O-])=O)N=CN1C)Formula: C4H6N4O2, and with the development of science, more effects of this compound(4531-54-8) can be discovered.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Extracurricular laboratory: Synthetic route of 616-14-8

There is still a lot of research devoted to this compound(SMILES:CCC(CI)C)Recommanded Product: 616-14-8, and with the development of science, more effects of this compound(616-14-8) can be discovered.

Recommanded Product: 616-14-8. The fused heterocycle is formed by combining a benzene ring with a single heterocycle, or two or more single heterocycles. Compound: 1-Iodo-2-methylbutane, is researched, Molecular C5H11I, CAS is 616-14-8, about An extension of the linear relationship between molecular rotation and bond refraction. Author is Poh, Bo-Long.

For the empirical equations [M]D = mΣ RD + I; [M]D is the mol. rotation, ΣRD is the sum of bond refractions, and m and I are constants for a given series of compounds, a different treatment of the term ΣRD extends the usefulness of the equation to all types of substituents, not just monovalent and linear substituents.

There is still a lot of research devoted to this compound(SMILES:CCC(CI)C)Recommanded Product: 616-14-8, and with the development of science, more effects of this compound(616-14-8) can be discovered.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem