Most of the compounds have physiologically active properties, and their biological properties are often attributed to the heteroatoms contained in their molecules, and most of these heteroatoms also appear in cyclic structures. A Journal, Journal of the American Chemical Society called Asymmetric reductions. VI. The action of the Grignard reagent from (+)-1-chloro-2-methylbutane on a series of alkyl tert-butyl ketones, Author is Foley, William M.; Welch, Frank J.; Combe, Edward M. La; Mosher, Harry S., which mentions a compound: 616-14-8, SMILESS is CCC(CI)C, Molecular C5H11I, Safety of 1-Iodo-2-methylbutane.
cf. C.A. 51, 1828h. Title reactions were carried out with six ketones, and the % asymmetric reduction, i, was determined by comparing the observed rotation of each resulting carbinol with the maximum rotation of pure isomers obtained by resolution. The absolute configurations of the prepared carbinols were determined and R, [α]25D (neat), and i were as follows: Me, 0.63°, 13.4; iso-Pr, -0.38°, 4.6; Et, -2.94°, 10.7; Pr, -3.87°, 11.3; Bu, -3.78°, 11.0; and iso-Bu, -2.56°, 5.9. The results agreed with a reaction mechanism of Grignard reduction involving an intermediate cyclic six-membered transition state in which stereospecificity was controlled by steric interaction of the alkyl and tert-butyl groups of the ketones and the Me and Et groups of the Grignard reagent. The alkyl tert-butyl ketones were prepared by coupling the appropriate acid chloride, RCOCl, with the Grignard reagent from freshly distilled tert-BuCl in the presence of Cu2Cl2 to yield the following products (R, % yield based on Grignard reagent, b.p., and n25D given): Me, 33, 105.2°, 1.3974; Et, 89, 125.0-5.8°, 1.4049-51; Pr, 63, 145.0-5.8°, 1.4109-11; iso-Pr, 36, 135.2-6.7°, 1.4049-68; Bu, 69, 167.0-9.0°, 1.4149-59; and iso-Bu, 40, 155.5-7.0°, 1.4135-42. Only the Me and Pr tert-butylcarbinols were resolved in earlier work, and the resolution of the remaining four, by classical methods (Ingersoll, C.A. 38, 29257), is reported here. Racemic tert-BuCHEtOH (I), b. 136°, n20D 1.4235, was converted to the dl-acid phthalate, m. 88.0-8.3°. By procedures involving brucine and recrystallizations the (-)-acid phthalate (II) was obtained, m. 91.0-1.5°, [α]27D -3.75° (c 20.5, CHCl3), the rotation in CHCl3 being concentration dependent, 2.2° (c 1.5). (+)-I was regenerated from II, n20D 1.4230, α23D 27.40° (neat, l 1); acetate from (+)-I b38 74°, α24D 12.16° (neat, l 0.5), d23 0.856; benzoate from (-)-I b0.8 20°, α25D -3.19° (neat, l 0.5), n20D 1.4912, d23 0.957. Racemic tert-BuCH(OH)Pr-iso (III), b. 150.9-1.1°, n20D 1.4290-9, gave the dl-acid phthalate, m. 114.5-16.0°. The brucine salt was prepared and a less soluble form obtained, m. 173-5°, [α]28D -23°, which on hydrolysis gave an acid phthalate (IV), m. 100.5-3.0°, [α]25D 0.00°, which was hydrolyzed to (-)-III, α28D -7.22° (neat, l 1). Hydrolysis of the more soluble form of the brucine salt, [α]28D -16.1°, gave an acid phthalate (V), [α]28D 0.00°, which on hydrolysis gave (+)-III, α28D 7.22° (neat, l 1). The strychnine salt of IV was also prepared, [α]28D -25.7°, the acid phthalate regenerated, and converted to (-)-III, α28D -8.94° (neat, l 1), n20D 1.4300. The cinchonine salt of V was prepared, m. 144-7° (decomposition), [α]28D 106°, from which an acid phthalate was regenerated, m. 105.5-7.0°, and hydrolyzed to (+)-III, α28D 9.06° (neat, l 1). These latter values of -8.94° for (-)-III and 9.06° for (+)-III were considered best values. Also prepared were acetate of (+)-III, b155 130°, n21D 1.4166, α28D -1.44° (neat, l 1), and benzoate of (+)-III, b32 195°, n19D 1.4969, α25D -0.16° (neat, l 1). Racemic tert-BuCH(OH)Bu-iso (VI), b150 115-16°, n25D 1.4309, m. 17°, gave acid phthalate (VII), m. 83.5-4.5°. Strychnine was used in the resolution and eventually (+)-VII was obtained, m. 75.6-7.5°, [α]23D 8.7° (c 1.5, CHCl3), hydrolyzed to (+)-VI, m. 40-1°, α26D 57.5° (c 20.4, MeOH), and α23D 54.5° (neat, by extrapolation of rotation-concentration curve); acetate of (+)-VI b17 73°, α22D 15.15° (neat, l 0.5), n20D 1.4176, d22 0.852; benzoate of (+)-VI b0.6 88°, α25D 8.24° (neat, l 0.5), n20D 1.4870, d25 0.955. Racemic tert-BuCHBuOH (VIII), n20D 1.4320, was converted to acid phthalate (IX), m. 100.5-2.0°, and then to the strychnine salt. The regenerated (+)-IX was a glass, α23D 4.5° (c 2.8, CHCl3), which was saponified to (+)-VIII, n20D 1.4314, α24D 17.10° (neat, l 0.5). The (-)-phthalate from the more soluble fractions of strychnine salt gave (-)-VIII, α24D -16.39° (neat, l 0.5). The dl-tetrachlorophthalate of VIII was also prepared, m. 126-8°, converted to the strychnine salt, and the less soluble form, [α]25D -12°, hydrolyzed to (-)-acid tetrachlorophthalate, α22D -9.69°, which was saponified to (+)-VIII, α22D 13.70° (neat, l 0.5); 3,5-dinitrobenzoate (X) of (+)-VIII m. 107.5° (MeOH), α25D 10.0° (c 2.4, CHCl3); 3,5-dinitrobcnzoate of dl-VIII, m. 84.0-4.5°. X was saponified to (+)-VIII, b23 76°, α25D 17.12° (neat, l 0.5), n20D 1.4310, d26 0.823. The value for pure (+)-VIII was taken as α25D 34.24° (neat, l 1). From (-)-VIII, α25D -32.8° (neat, l 1), was prepared: acetate, b20 87°, α26D -11.25° (neat, l 0.5), n20D 1.4191, d26 0.851; benzoate, b0.5 98°, α25D -7.29° (neat, l 0.5), n20D 1.4887, d25 0.936; p-nitrobenzoate, b0.5 144-5°, α29D -12.50°, n25D 1.5070. Some work was done with the Grignard reagents of the following prepared compounds: (+)-1-bromo-2-methylbutane, b100 60.8°, n20D 1.4453, α24D 4.22° (neat, l 1), 84% optical purity, a 2nd preparation b100 57-8°, α26.6D 4.66°, 93% optical purity; and (+)-1-iodo-2-methytbutane, n20D 1.4955-69, α21D 8.65° (neat, l 1), 98.5% optical purity, 2nd preparation b53 70°, n20D 1.4969-72, α25D 16.8° (neat, l 2), optical purity 96.5%.
There are many compounds similar to this compound(616-14-8)Safety of 1-Iodo-2-methylbutane. if you want to know more, you can check out my other articles. I hope it will help you,maybe you’ll find some useful information.
Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem