Introduction of a new synthetic route about 616-14-8

This literature about this compound(616-14-8)Product Details of 616-14-8has given us a lot of inspiration, and I hope that the research on this compound(1-Iodo-2-methylbutane) can be further advanced. Maybe we can get more compounds in a similar way.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Asymmetric reductions. VI. The action of the Grignard reagent from (+)-1-chloro-2-methylbutane on a series of alkyl tert-butyl ketones》. Authors are Foley, William M.; Welch, Frank J.; Combe, Edward M. La; Mosher, Harry S..The article about the compound:1-Iodo-2-methylbutanecas:616-14-8,SMILESS:CCC(CI)C).Product Details of 616-14-8. Through the article, more information about this compound (cas:616-14-8) is conveyed.

cf. C.A. 51, 1828h. Title reactions were carried out with six ketones, and the % asymmetric reduction, i, was determined by comparing the observed rotation of each resulting carbinol with the maximum rotation of pure isomers obtained by resolution. The absolute configurations of the prepared carbinols were determined and R, [α]25D (neat), and i were as follows: Me, 0.63°, 13.4; iso-Pr, -0.38°, 4.6; Et, -2.94°, 10.7; Pr, -3.87°, 11.3; Bu, -3.78°, 11.0; and iso-Bu, -2.56°, 5.9. The results agreed with a reaction mechanism of Grignard reduction involving an intermediate cyclic six-membered transition state in which stereospecificity was controlled by steric interaction of the alkyl and tert-butyl groups of the ketones and the Me and Et groups of the Grignard reagent. The alkyl tert-butyl ketones were prepared by coupling the appropriate acid chloride, RCOCl, with the Grignard reagent from freshly distilled tert-BuCl in the presence of Cu2Cl2 to yield the following products (R, % yield based on Grignard reagent, b.p., and n25D given): Me, 33, 105.2°, 1.3974; Et, 89, 125.0-5.8°, 1.4049-51; Pr, 63, 145.0-5.8°, 1.4109-11; iso-Pr, 36, 135.2-6.7°, 1.4049-68; Bu, 69, 167.0-9.0°, 1.4149-59; and iso-Bu, 40, 155.5-7.0°, 1.4135-42. Only the Me and Pr tert-butylcarbinols were resolved in earlier work, and the resolution of the remaining four, by classical methods (Ingersoll, C.A. 38, 29257), is reported here. Racemic tert-BuCHEtOH (I), b. 136°, n20D 1.4235, was converted to the dl-acid phthalate, m. 88.0-8.3°. By procedures involving brucine and recrystallizations the (-)-acid phthalate (II) was obtained, m. 91.0-1.5°, [α]27D -3.75° (c 20.5, CHCl3), the rotation in CHCl3 being concentration dependent, 2.2° (c 1.5). (+)-I was regenerated from II, n20D 1.4230, α23D 27.40° (neat, l 1); acetate from (+)-I b38 74°, α24D 12.16° (neat, l 0.5), d23 0.856; benzoate from (-)-I b0.8 20°, α25D -3.19° (neat, l 0.5), n20D 1.4912, d23 0.957. Racemic tert-BuCH(OH)Pr-iso (III), b. 150.9-1.1°, n20D 1.4290-9, gave the dl-acid phthalate, m. 114.5-16.0°. The brucine salt was prepared and a less soluble form obtained, m. 173-5°, [α]28D -23°, which on hydrolysis gave an acid phthalate (IV), m. 100.5-3.0°, [α]25D 0.00°, which was hydrolyzed to (-)-III, α28D -7.22° (neat, l 1). Hydrolysis of the more soluble form of the brucine salt, [α]28D -16.1°, gave an acid phthalate (V), [α]28D 0.00°, which on hydrolysis gave (+)-III, α28D 7.22° (neat, l 1). The strychnine salt of IV was also prepared, [α]28D -25.7°, the acid phthalate regenerated, and converted to (-)-III, α28D -8.94° (neat, l 1), n20D 1.4300. The cinchonine salt of V was prepared, m. 144-7° (decomposition), [α]28D 106°, from which an acid phthalate was regenerated, m. 105.5-7.0°, and hydrolyzed to (+)-III, α28D 9.06° (neat, l 1). These latter values of -8.94° for (-)-III and 9.06° for (+)-III were considered best values. Also prepared were acetate of (+)-III, b155 130°, n21D 1.4166, α28D -1.44° (neat, l 1), and benzoate of (+)-III, b32 195°, n19D 1.4969, α25D -0.16° (neat, l 1). Racemic tert-BuCH(OH)Bu-iso (VI), b150 115-16°, n25D 1.4309, m. 17°, gave acid phthalate (VII), m. 83.5-4.5°. Strychnine was used in the resolution and eventually (+)-VII was obtained, m. 75.6-7.5°, [α]23D 8.7° (c 1.5, CHCl3), hydrolyzed to (+)-VI, m. 40-1°, α26D 57.5° (c 20.4, MeOH), and α23D 54.5° (neat, by extrapolation of rotation-concentration curve); acetate of (+)-VI b17 73°, α22D 15.15° (neat, l 0.5), n20D 1.4176, d22 0.852; benzoate of (+)-VI b0.6 88°, α25D 8.24° (neat, l 0.5), n20D 1.4870, d25 0.955. Racemic tert-BuCHBuOH (VIII), n20D 1.4320, was converted to acid phthalate (IX), m. 100.5-2.0°, and then to the strychnine salt. The regenerated (+)-IX was a glass, α23D 4.5° (c 2.8, CHCl3), which was saponified to (+)-VIII, n20D 1.4314, α24D 17.10° (neat, l 0.5). The (-)-phthalate from the more soluble fractions of strychnine salt gave (-)-VIII, α24D -16.39° (neat, l 0.5). The dl-tetrachlorophthalate of VIII was also prepared, m. 126-8°, converted to the strychnine salt, and the less soluble form, [α]25D -12°, hydrolyzed to (-)-acid tetrachlorophthalate, α22D -9.69°, which was saponified to (+)-VIII, α22D 13.70° (neat, l 0.5); 3,5-dinitrobenzoate (X) of (+)-VIII m. 107.5° (MeOH), α25D 10.0° (c 2.4, CHCl3); 3,5-dinitrobcnzoate of dl-VIII, m. 84.0-4.5°. X was saponified to (+)-VIII, b23 76°, α25D 17.12° (neat, l 0.5), n20D 1.4310, d26 0.823. The value for pure (+)-VIII was taken as α25D 34.24° (neat, l 1). From (-)-VIII, α25D -32.8° (neat, l 1), was prepared: acetate, b20 87°, α26D -11.25° (neat, l 0.5), n20D 1.4191, d26 0.851; benzoate, b0.5 98°, α25D -7.29° (neat, l 0.5), n20D 1.4887, d25 0.936; p-nitrobenzoate, b0.5 144-5°, α29D -12.50°, n25D 1.5070. Some work was done with the Grignard reagents of the following prepared compounds: (+)-1-bromo-2-methylbutane, b100 60.8°, n20D 1.4453, α24D 4.22° (neat, l 1), 84% optical purity, a 2nd preparation b100 57-8°, α26.6D 4.66°, 93% optical purity; and (+)-1-iodo-2-methytbutane, n20D 1.4955-69, α21D 8.65° (neat, l 1), 98.5% optical purity, 2nd preparation b53 70°, n20D 1.4969-72, α25D 16.8° (neat, l 2), optical purity 96.5%.

This literature about this compound(616-14-8)Product Details of 616-14-8has given us a lot of inspiration, and I hope that the research on this compound(1-Iodo-2-methylbutane) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Never Underestimate the Influence Of 616-14-8

This literature about this compound(616-14-8)COA of Formula: C5H11Ihas given us a lot of inspiration, and I hope that the research on this compound(1-Iodo-2-methylbutane) can be further advanced. Maybe we can get more compounds in a similar way.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Fumigation of agricultural products. XII. Sorption of methyl bromide on groundnuts》. Authors are Somade, H. M. B..The article about the compound:1-Iodo-2-methylbutanecas:616-14-8,SMILESS:CCC(CI)C).COA of Formula: C5H11I. Through the article, more information about this compound (cas:616-14-8) is conveyed.

Sorption of MeBr on groundnuts (I) was studied with both undecorticated I and I separated into husk, cotyledon, and germ. Successful treatment of I with MeBr depended on the moisture content of the nuts. Impairment of germination following MeBr treatment was observed when the moisture content exceeded 5%. Sorption of MeBr was found to increase more rapidly than the dosage, necessitating careful dosage control. At concentrations lower than that critical for a particular moisture content and period of fumigation, a slight stimulating action of MeBr on germination was observed.

This literature about this compound(616-14-8)COA of Formula: C5H11Ihas given us a lot of inspiration, and I hope that the research on this compound(1-Iodo-2-methylbutane) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Derivation of elementary reaction about 616-14-8

This literature about this compound(616-14-8)Computed Properties of C5H11Ihas given us a lot of inspiration, and I hope that the research on this compound(1-Iodo-2-methylbutane) can be further advanced. Maybe we can get more compounds in a similar way.

In organic chemistry, atoms other than carbon and hydrogen are generally referred to as heteroatoms. The most common heteroatoms are nitrogen, oxygen and sulfur. Now I present to you an article called Radical Yields in the Radiolysis of Branched Hydrocarbons: Tertiary C-H Bond Rupture in 2,3-Dimethylbutane, 2,4-Dimethylpentane, and 3-Ethylpentane, published in 2003-10-30, which mentions a compound: 616-14-8, mainly applied to radiolysis branched hydrocarbon tertiary carbon hydrogen bond rupture, Computed Properties of C5H11I.

Gel permeation chromatog. has been applied to iodine scavenging studies of the distribution of radicals produced in the radiolysis of sym. branched hydrocarbons 2,3-dimethylbutane, 2,4-dimethylpentane, and 3-ethylpentane. The principal iodides observed are those expected as a result of simple bond rupture. In the case of 2,3-dimethylbutane all five expected iodides are readily resolvable and it is shown that the loss of H from a tertiary position is favored over loss from a primary position by a factor of ∼10. A similar ratio is also observed for 2,4-dimethylpentane. The higher ratio of 15 observed for 3-ethylpentane indicates a dependence on the number of tertiary sites on the alkane. The relative yield of ∼3.3 for the loss of secondary and primary H atoms from 2,4-dimethylpentane and 3-ethylpentane is similar to that for normal alkanes, indicating a negligible effect of the adjacent tertiary carbon. In all three cases the rupture of terminal C-C bonds is relatively infrequent with C-C rupture occurring preferentially at the bonds adjacent to the tertiary carbon.

This literature about this compound(616-14-8)Computed Properties of C5H11Ihas given us a lot of inspiration, and I hope that the research on this compound(1-Iodo-2-methylbutane) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

The Absolute Best Science Experiment for 616-14-8

This literature about this compound(616-14-8)Safety of 1-Iodo-2-methylbutanehas given us a lot of inspiration, and I hope that the research on this compound(1-Iodo-2-methylbutane) can be further advanced. Maybe we can get more compounds in a similar way.

Olah, George A.; Welch, John published an article about the compound: 1-Iodo-2-methylbutane( cas:616-14-8,SMILESS:CCC(CI)C ).Safety of 1-Iodo-2-methylbutane. Aromatic heterocyclic compounds can be classified according to the number of heteroatoms or the size of the ring. The authors also want to convey more information about this compound (cas:616-14-8) through the article.

Thirty-nine RX (R = C4-8 alkyl, cyclopentyl, cyclohexyl, adamantyl, norbornyl, PhCH2; X = F, Cl, Br, I) were prepared by reaction of the corresponding ROH with MX (M = Na, K, NH4) in polyhydrogen fluoridepyridine. Thus, BuCH2OH was kept 1 hr with 70% HF-pyridine containing NaCl to give 89% BuCH2Cl.

This literature about this compound(616-14-8)Safety of 1-Iodo-2-methylbutanehas given us a lot of inspiration, and I hope that the research on this compound(1-Iodo-2-methylbutane) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

The Absolute Best Science Experiment for 616-14-8

This literature about this compound(616-14-8)Application In Synthesis of 1-Iodo-2-methylbutanehas given us a lot of inspiration, and I hope that the research on this compound(1-Iodo-2-methylbutane) can be further advanced. Maybe we can get more compounds in a similar way.

Application In Synthesis of 1-Iodo-2-methylbutane. The mechanism of aromatic electrophilic substitution of aromatic heterocycles is consistent with that of benzene. Compound: 1-Iodo-2-methylbutane, is researched, Molecular C5H11I, CAS is 616-14-8, about Diphosphorus tetraiodide (P2I4). A valuable reagent for regioselective synthesis of iodo alkanes from alcohols. Author is Lauwers, M.; Regnier, B.; Van Eenoo, M.; Denis, J. N.; Krief, A..

Primary, secondary, and tertiary alkanols and phenylalkanols and secondary and tertiary cycloalkanols were converted in high yields to the resp. alkyl, phenylalkyl, and cycloalkyl iodides by P2I4 in CS2 and at 20°. E.g., ROH [R = Me(CH2)7, Ph(CH2)2, cyclopentyl] gave 80-8% RI in 24 h.

This literature about this compound(616-14-8)Application In Synthesis of 1-Iodo-2-methylbutanehas given us a lot of inspiration, and I hope that the research on this compound(1-Iodo-2-methylbutane) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

A small discovery about 616-14-8

This literature about this compound(616-14-8)Reference of 1-Iodo-2-methylbutanehas given us a lot of inspiration, and I hope that the research on this compound(1-Iodo-2-methylbutane) can be further advanced. Maybe we can get more compounds in a similar way.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Primary active amyl halides》. Authors are Whitmore, Frank C.; Olewine, J. Harris.The article about the compound:1-Iodo-2-methylbutanecas:616-14-8,SMILESS:CCC(CI)C).Reference of 1-Iodo-2-methylbutane. Through the article, more information about this compound (cas:616-14-8) is conveyed.

Primary active AmOH (I) with SOCl2 in C5H5N give 77% of the AmCl, b140 50.5-1°, nD20 1.4125, n420 0.8852, [α]D28.5 1.66°. I and PBr3 at 5-15° give 29% of the AmBr, b140 69.6°, nD20 1.4450, d420 1.2239, [α]D25 3.75°. I and BzCl give 80% of the benzoate, b20 140.2°, nD20 1.4948, d420 0.9913, [α]D28 6.09°; with MeMgI this yields 17.5% of the AmI, b20 47.1°, nD20 1.4969, d42 1.5227, [α]D28 4.84°. Data are given for the constants of I after regeneration from the chloride or bromide through the Grignard reagents; the total racemization in the steps I → AmCl or AmBr → Grignard reagent → I is not over 10%.

This literature about this compound(616-14-8)Reference of 1-Iodo-2-methylbutanehas given us a lot of inspiration, and I hope that the research on this compound(1-Iodo-2-methylbutane) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Discovery of 616-14-8

This literature about this compound(616-14-8)Category: thiomorpholinehas given us a lot of inspiration, and I hope that the research on this compound(1-Iodo-2-methylbutane) can be further advanced. Maybe we can get more compounds in a similar way.

Category: thiomorpholine. The reaction of aromatic heterocyclic molecules with protons is called protonation. Aromatic heterocycles are more basic than benzene due to the participation of heteroatoms. Compound: 1-Iodo-2-methylbutane, is researched, Molecular C5H11I, CAS is 616-14-8, about Gas chromatography of alkyl iodides. II. Influence of structure on retention time and sensitivity to electron capture detector. Author is Castello, Gianrico; D’Amato, Giuseppina.

The retention times and indexes observed for 34 alkyl iodides during electron-capture gas-liquid chromatog. on a 15% tricresyl phosphate/Chromosorb W (DMCS-treated)column are examined as functions of the number of C atoms, the I position, and the number and position of branchings in the alkyl iodide mols. The relative molar response of the electron-capture detector is useful for detector standardizations since it depends only on the standing current.

This literature about this compound(616-14-8)Category: thiomorpholinehas given us a lot of inspiration, and I hope that the research on this compound(1-Iodo-2-methylbutane) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Chemical Properties and Facts of 616-14-8

This literature about this compound(616-14-8)Recommanded Product: 616-14-8has given us a lot of inspiration, and I hope that the research on this compound(1-Iodo-2-methylbutane) can be further advanced. Maybe we can get more compounds in a similar way.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Optical rotation and atomic dimension for the four optically active 1-halo-2-methylbutanes》. Authors are Brauns, Dirk H..The article about the compound:1-Iodo-2-methylbutanecas:616-14-8,SMILESS:CCC(CI)C).Recommanded Product: 616-14-8. Through the article, more information about this compound (cas:616-14-8) is conveyed.

cf. C. A. 25, 2977. Detailed directions are given for the preparation of pure 2-methyl-1-butanol (I) and its F, Cl, Br and I derivatives. The following properties are described: I b. 128°, b50 65.7°, d420 0.8193, nD20 1.4107, sp. rotation for λ 5892.5 A. -5.756, for 5461 A. -6.835, for 5850 A. -5.78. The last 3 values were taken at about 20°. The corresponding values for the derivatives are: for 1-fluoro-2-methylbutane 55.9°, -, 0.7906, 1.3576, -8.865, -10.477, -8.87; for 1-chloro-2-methylbutane 100.45°, 27.7°, 0.8857, 1.4124, +1.644, +1.847, +1.68; for 1-bromo-2-methylbutane 121.6°, 45.0°, 1.2234, 1.4451, +4.043, +4.707, +4.09; and for 1-iodo-2-methylbutane -, 66.5°, 1.5253, 1.4977, +5.685, +6.626, +5.71. The differences in mol. rotation (Cl-F), (Br-Cl) and (I-Br) have the ratio 41:18:21.6, which agrees with the ratio of the differences of the radii of the respective neutral atoms.

This literature about this compound(616-14-8)Recommanded Product: 616-14-8has given us a lot of inspiration, and I hope that the research on this compound(1-Iodo-2-methylbutane) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Our Top Choice Compound: 616-14-8

This literature about this compound(616-14-8)Quality Control of 1-Iodo-2-methylbutanehas given us a lot of inspiration, and I hope that the research on this compound(1-Iodo-2-methylbutane) can be further advanced. Maybe we can get more compounds in a similar way.

Poh, Bo-Long published an article about the compound: 1-Iodo-2-methylbutane( cas:616-14-8,SMILESS:CCC(CI)C ).Quality Control of 1-Iodo-2-methylbutane. Aromatic heterocyclic compounds can be classified according to the number of heteroatoms or the size of the ring. The authors also want to convey more information about this compound (cas:616-14-8) through the article.

For the empirical equations [M]D = mΣ RD + I; [M]D is the mol. rotation, ΣRD is the sum of bond refractions, and m and I are constants for a given series of compounds, a different treatment of the term ΣRD extends the usefulness of the equation to all types of substituents, not just monovalent and linear substituents.

This literature about this compound(616-14-8)Quality Control of 1-Iodo-2-methylbutanehas given us a lot of inspiration, and I hope that the research on this compound(1-Iodo-2-methylbutane) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem