As far as I know, this compound(4531-54-8)Recommanded Product: 4531-54-8 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.
In organic chemistry, atoms other than carbon and hydrogen are generally referred to as heteroatoms. The most common heteroatoms are nitrogen, oxygen and sulfur. Now I present to you an article called Formation of 4(5)-aminoglyoxalines. I, published in 1930, which mentions a compound: 4531-54-8, mainly applied to , Recommanded Product: 4531-54-8.
The only evidence at present that 4(5)-aminoglyoxalines are true aromatic amines is the formation, after diazotization, of colored soln with aqueous β-C10H7ONa. Reduction of 4(5)-nitro-2-methyl- and 4(5)-nitroglyoxalines with Fe and H2O, FeSO4 and NaOH, Na2S or activated Al gave no basic material. Et glyoxaline-4(5)-carboxylate and N2H4.H2O, heated on the H2O bath for 30 min., give nearly quant. glyoxaline-4(5)-carboxyhydrazide, crystallizing with 1H2O, m. 213°, reduces NH4OH-AgNO3 slowly but not Fehling solution; picrate, yellow, m. 223° (decomposition), crystallizes from 85 parts boiling H2O. With HNO3 there results glyoxaline-4(5)-carboxyazide (I), decomposes explosively at 137°; heating with H2O does not give the urea; the green solution gives an amorphous picrate, chars 230°. Boiling I with absolute EtOH for 4 hrs. gives 42.2% of 4(5)-carbethoxyaminoglyoxaline, m. 180°; picrate, golden, decomposes 210°, crystallizes from 60 parts boiling H2O; nitrate (II), decomposes 143°. I and MeOH give 50% of the corresponding carbomethoxy derivative, m. 175°; picrate, decomposes 243°. Neither derivative could be hydrolyzed by acid or alkali. II and concentrated H2SO4 give 58% of 5(4)-nitro-4(5)-carbethoxyaminoglyoxaline, m. 234° (decomposition); this could not be converted by 10% Na2CO3 into the corresponding amine. 5-Chloro-4-nitro-1-methylglyoxaline and EtOH-NH3, heated 4 hrs. at 140°, give 63.7% of the 5-NH2 derivative, yellow, m. 303° (decomposition), crystallizes from 170 parts boiling H2O; it does not form an Ac derivative, a benzylidene derivative or a picrate; after treatment with HNO2, alk. C10H7ONa gives a greenish blue color and alk. m-C6H4(OH)2 a violet color. With 16% HCl, HNO2 is liberated and α-methylamino-α-hydroxyacetamide, pale brown, m. 140°, is formed.
As far as I know, this compound(4531-54-8)Recommanded Product: 4531-54-8 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.
Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem