The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Diimidazoles. IV. Derivatives of 4,5-diaminoimidazole and their attempted cyclization》. Authors are Schubert, Hermann; Heydenhauss, Dieter.The article about the compound:1-Methyl-4-nitro-1H-imidazol-5-aminecas:4531-54-8,SMILESS:NC1=C([N+]([O-])=O)N=CN1C).HPLC of Formula: 4531-54-8. Through the article, more information about this compound (cas:4531-54-8) is conveyed.
The preparation of a series of 1-methyl-4-nitro-5-alkylaminoimidazoles (I) is described. The catalytic hydrogenation of I and of 1-methyl-4-nitro-5-aminoimidazole (Ia) (R = H) (II) yielded unstable diamines which could neither be isolated nor cyclized. Acetylation of II gave the di-Ac derivative (III) of II. I were formylated and acetylated smoothly; hydrogenation of the products yielded stable acyl derivatives of 4,5-diaminoimidazole. (CONHMe)2 with PCl5 gave 40.8% 5-chloro-1-methylimidazole (IV), b15 90°. IV (103 g.), 100 cc. concentrated HNO3, and 400 cc. H2O evaporated, the residue added in portions at 10° to 3 times its weight of concentrated H2SO4, and the mixture heated 2 hrs. on a water bath yielded 122 g. 5-Cl analog (V) of II, m. 149-50°. V (13.2g.)in 3.5%absolute NH3EtOH heated 2 hrs. at 130-40° in a sealed tube yielded 6.3 g. II, m. 303° (decomposition) (H2O). II (5 g.) and 200 cc. Ac2O refluxed about 5 hrs. gave 5.2 g. III, m. 149.5-50.5°. V (1.62 g.) in 25 cc. 7% absolute alc. MeNH2 refluxed 3 hrs. yielded 1.45 g. Ia (R = Me) (VI), m. 156-7° (EtOH). VI (5 g.) in 50 cc. HCO2Ac kept 20 hrs. at room temperature and concentrated yielded 5 g. the N-CHO derivative (VII), m. 142.5-3.5° (EtOH). VI (10 g.) in 200 cc. Ac2O heated 1 hr. at 90-100° gave 8.2 g. the N-Ac derivative (VIII), m. 168-9° (BuOH or dioxane). V (1.62 g.) in 37 cc. 7% absolute alc. EtNH2 refluxed 3 hrs. and refrigerated overnight yielded 1.6 g. Ia (R = Et), m. 161-2° (dioxane). In the same manner were prepared the following Ia (R, m.p., and % yield given): Pr, 114-18° (dioxan-epetr. ether), 92; Bu, 101-6° (dioxane-petr. ether), 61; PhCH2, 132-3° (EtOH), 90. Also prepared was the N-Me derivative of VI, m. 94-5.5° (C6H6-petr. ether), 47% yield. II (0.76 g.) in 30 cc. 85% HCO2H hydrogenated 4 hrs. at 17°/756 mm. over 0.2 g. PtO2 yielded a black-brown oil, which treated with dilute aqueous NaOH liberated NH3. III (0.5 g.) in 45 cc. absolute BuOH hydrogenated 40 min. at 17°/770 mm. over 0.2 g. PtO2, and the resulting oily product in C6H6 treated with the stoichiometric amount picric acid yielded 1-methyl-4-amino-5-(N,N-diacetylamino)imidazole picrate, m. 160-1° (decomposition) (BuOH). The BuOH solution from a duplicate run refluxed 1.5 hrs. under argon gave only a brown, flocculent precipitate Hydrogenation of 0.5 g. VI in H2O, dilute HCl, dry dioxane, AcOH, AcOH-HCl, and Ac2O over 0.2 g. PtO2 gave only oily unstable materials. VII (0.6 g.) in 100 cc. Bu0H hydrogenated 50 min. at 18°/763 mm., and the resulting yellow oil treated in EtOH with picric acid gave the picrate of 1-methyl-4-amino-5-(N-methyl-N-formylamino)imidazole (IX), m. 173-70 (decomposition) (H2O); styphnate m. 177-8.5° (decomposition) (H2O). The BuOH solution of the crude IX refluxed 2 hrs. under argon yielded a brown, flocculent precipitate VIII (2 g.) in 120 cc. BuOH hydrogenated 1 hr. at 20°/755 mm. over 0.4 g. PtO2 yielded 1.4 g. 5-AcMeN analog (X) of IX, m. 165-6° ( PhCl); picrate m. 217-21° (decomposition) (H2O); styphnate m. 196-9° (decomposition) (H2O); HCl salt m. 225-6° (decomposition). All attempted cyclizations of X were unsuccessful. X (0.5 g.) in 3 cc. absolute HCO2H refluxed 1.5 hrs. yielded 0.4 g. 1-methyl-4-formyl-amino-5-(N-methyl-N-acetylamino)imidazole (XI), m. 154-5.5° (absolute EtOH-Et2O). X (2.1 g.) in 15 cc. AcOH refluxed 0.5 hr. yielded 1.47 g. 4-AcNH analog of XI, m. 188.5-9.5° (1:1 dioxane-PhCl); picrate m. 166-9° (EtOH); all attempted cyclizations were unsuccessful.
Although many compounds look similar to this compound(4531-54-8)HPLC of Formula: 4531-54-8, numerous studies have shown that this compound(SMILES:NC1=C([N+]([O-])=O)N=CN1C), has unique advantages. If you want to know more about similar compounds, you can read my other articles.
Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem