A new application about 4531-54-8

In addition to the literature in the link below, there is a lot of literature about this compound(1-Methyl-4-nitro-1H-imidazol-5-amine)Reference of 1-Methyl-4-nitro-1H-imidazol-5-amine, illustrating the importance and wide applicability of this compound(4531-54-8).

Most of the natural products isolated at present are heterocyclic compounds, so heterocyclic compounds occupy an important position in the research of organic chemistry. A compound: 4531-54-8, is researched, SMILESS is NC1=C([N+]([O-])=O)N=CN1C, Molecular C4H6N4O2Journal, Acta Poloniae Pharmaceutica called Nitroimidazoles. VI. Partition coefficients and tautomerism of simple nitroimidazoles, Author is Suwinski, Jerzy; Salwinska, Ewa; Watras, Jan; Widel, Maria, the main research direction is nitroimidazole derivative partition coefficient tautomerism.Reference of 1-Methyl-4-nitro-1H-imidazol-5-amine.

Octanol-water partition coefficients (P) were determined for 42 simple nitroimidazoles with Me, Cl, Br, MeO, NH2, and NO2 substituents. Correlation between log P and the substituent constants πX of Hansch and fX of Nys-Rekker was derived. For the N-methylated compounds, the average value of πN-CH3 was calculated to be -0.30. Significance of log P measurement in estimating the tautomeric equilibrium in 4(5)-nitroimidazoles is discussed in detail.

In addition to the literature in the link below, there is a lot of literature about this compound(1-Methyl-4-nitro-1H-imidazol-5-amine)Reference of 1-Methyl-4-nitro-1H-imidazol-5-amine, illustrating the importance and wide applicability of this compound(4531-54-8).

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

The effect of the change of synthetic route on the product 4531-54-8

In addition to the literature in the link below, there is a lot of literature about this compound(1-Methyl-4-nitro-1H-imidazol-5-amine)Electric Literature of C4H6N4O2, illustrating the importance and wide applicability of this compound(4531-54-8).

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Imidazole series. XX. Aminonitroimidazoles and diaminoimidazoles》. Authors are Kochergin, P. M.; Verenikina, S. G.; Bushueva, K. S..The article about the compound:1-Methyl-4-nitro-1H-imidazol-5-aminecas:4531-54-8,SMILESS:NC1=C([N+]([O-])=O)N=CN1C).Electric Literature of C4H6N4O2. Through the article, more information about this compound (cas:4531-54-8) is conveyed.

cf. preceding abstract The aminonitroimidazoles I-XII were prepared by heating the corresponding nitrochloroimidazoles with a 8-15% alc. NH3 solution at 120-50° for 5-10 hrs. The products I, VII, and XII were obtained in the presence of CuSO4 catalyst (formula, R, m.p., and % yield 131-1.5°, 15-20; VII, iso-Bu, 108-10°, 15; VIII, H, 222.5-23°, 30.5; IX, Me, 198-9°, 39.5; X, Et, 160-1°, 58; XI, Pr, 130-1°, 32; XII, iso-Bu, 129-30°, 21.5. The hydrogenation of II in Ac2O in the presence of Raney Ni gave 1-ethyl-2-methyl-4,5-diaminoimidazole diacetate at 30-45° and initial H pressure of 10 atm. and tetraacetate at 50-80° and 100 atm.

In addition to the literature in the link below, there is a lot of literature about this compound(1-Methyl-4-nitro-1H-imidazol-5-amine)Electric Literature of C4H6N4O2, illustrating the importance and wide applicability of this compound(4531-54-8).

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

A small discovery about 4531-54-8

In addition to the literature in the link below, there is a lot of literature about this compound(1-Methyl-4-nitro-1H-imidazol-5-amine)Synthetic Route of C4H6N4O2, illustrating the importance and wide applicability of this compound(4531-54-8).

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Imidazole series. XX. Aminonitroimidazoles and diaminoimidazoles》. Authors are Kochergin, P. M.; Verenikina, S. G.; Bushueva, K. S..The article about the compound:1-Methyl-4-nitro-1H-imidazol-5-aminecas:4531-54-8,SMILESS:NC1=C([N+]([O-])=O)N=CN1C).Synthetic Route of C4H6N4O2. Through the article, more information about this compound (cas:4531-54-8) is conveyed.

cf. preceding abstract The aminonitroimidazoles I-XII were prepared by heating the corresponding nitrochloroimidazoles with a 8-15% alc. NH3 solution at 120-50° for 5-10 hrs. The products I, VII, and XII were obtained in the presence of CuSO4 catalyst (formula, R, m.p., and % yield 131-1.5°, 15-20; VII, iso-Bu, 108-10°, 15; VIII, H, 222.5-23°, 30.5; IX, Me, 198-9°, 39.5; X, Et, 160-1°, 58; XI, Pr, 130-1°, 32; XII, iso-Bu, 129-30°, 21.5. The hydrogenation of II in Ac2O in the presence of Raney Ni gave 1-ethyl-2-methyl-4,5-diaminoimidazole diacetate at 30-45° and initial H pressure of 10 atm. and tetraacetate at 50-80° and 100 atm.

In addition to the literature in the link below, there is a lot of literature about this compound(1-Methyl-4-nitro-1H-imidazol-5-amine)Synthetic Route of C4H6N4O2, illustrating the importance and wide applicability of this compound(4531-54-8).

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Now Is The Time For You To Know The Truth About 4531-54-8

In addition to the literature in the link below, there is a lot of literature about this compound(1-Methyl-4-nitro-1H-imidazol-5-amine)Recommanded Product: 4531-54-8, illustrating the importance and wide applicability of this compound(4531-54-8).

Recommanded Product: 4531-54-8. Aromatic compounds can be divided into two categories: single heterocycles and fused heterocycles. Compound: 1-Methyl-4-nitro-1H-imidazol-5-amine, is researched, Molecular C4H6N4O2, CAS is 4531-54-8, about Synthesis of imidazo[4,5-b]pyrazine nucleosides. Author is Panzica, Raymond P.; Townsend, Leroy B..

5,6-Dimethyl-1-(β-D-ribofuranosyl)imidazo[4,5-b]pyrazine (I; R = β-D-ribofuranosyl) was prepared by glycosylation of the Me3Si derivative (I; R = Me3Si) (II), by fusion with 1-O-acetyl-2,3,5-tri-O-benzoyl-β-D-ribofuranose, or by cycloaddition of 4,5-diamino-1-(β-D-ribofuranosyl)-imidazole with biacetyl.

In addition to the literature in the link below, there is a lot of literature about this compound(1-Methyl-4-nitro-1H-imidazol-5-amine)Recommanded Product: 4531-54-8, illustrating the importance and wide applicability of this compound(4531-54-8).

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

A new synthetic route of 4531-54-8

In addition to the literature in the link below, there is a lot of literature about this compound(1-Methyl-4-nitro-1H-imidazol-5-amine)SDS of cas: 4531-54-8, illustrating the importance and wide applicability of this compound(4531-54-8).

SDS of cas: 4531-54-8. The reaction of aromatic heterocyclic molecules with protons is called protonation. Aromatic heterocycles are more basic than benzene due to the participation of heteroatoms. Compound: 1-Methyl-4-nitro-1H-imidazol-5-amine, is researched, Molecular C4H6N4O2, CAS is 4531-54-8, about Development and validation of stability – indicating RP-HPLC chromatographic method by forced degradation studies for azathioprine by related substances. Author is Hiralben, S. Mehta; Shinghvi, Indrajeet; Raj, Hasumati A..

Simple, rapid and reproducible stability-indicating methods were established for quant. determination of azathioprine using a, phenomenex 250 mm × 4.9 mm C18, 5 μm, inertsil and UV detection at 240 nm. The isocratic elution was used to quantify the analyte and the mobile phase was acetate buffer: acetonitrile: methanol (30: 35: 35) was pumped at 1.0 mL/min. The method was linear between 10-300 μg/mL, statistically validated for its linearity, precision and accuracy. In this study, degradation behavior of azathioprine was studied by subjecting the drug to various ICH stress conditions. The intra and inter day variation was found to be less than 1% showing high precision of the assay method. It was found that the excipients in the com. tablet did not interfere with the method. Developed method can routinely use for the estimation of azathioprine related compounds from the dosage form and also for stability sample.

In addition to the literature in the link below, there is a lot of literature about this compound(1-Methyl-4-nitro-1H-imidazol-5-amine)SDS of cas: 4531-54-8, illustrating the importance and wide applicability of this compound(4531-54-8).

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Derivation of elementary reaction about 4531-54-8

Here is just a brief introduction to this compound(4531-54-8)Quality Control of 1-Methyl-4-nitro-1H-imidazol-5-amine, more information about the compound(1-Methyl-4-nitro-1H-imidazol-5-amine) is in the article, you can click the link below.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Diimidazoles. IV. Derivatives of 4,5-diaminoimidazole and their attempted cyclization》. Authors are Schubert, Hermann; Heydenhauss, Dieter.The article about the compound:1-Methyl-4-nitro-1H-imidazol-5-aminecas:4531-54-8,SMILESS:NC1=C([N+]([O-])=O)N=CN1C).Quality Control of 1-Methyl-4-nitro-1H-imidazol-5-amine. Through the article, more information about this compound (cas:4531-54-8) is conveyed.

The preparation of a series of 1-methyl-4-nitro-5-alkylaminoimidazoles (I) is described. The catalytic hydrogenation of I and of 1-methyl-4-nitro-5-aminoimidazole (Ia) (R = H) (II) yielded unstable diamines which could neither be isolated nor cyclized. Acetylation of II gave the di-Ac derivative (III) of II. I were formylated and acetylated smoothly; hydrogenation of the products yielded stable acyl derivatives of 4,5-diaminoimidazole. (CONHMe)2 with PCl5 gave 40.8% 5-chloro-1-methylimidazole (IV), b15 90°. IV (103 g.), 100 cc. concentrated HNO3, and 400 cc. H2O evaporated, the residue added in portions at 10° to 3 times its weight of concentrated H2SO4, and the mixture heated 2 hrs. on a water bath yielded 122 g. 5-Cl analog (V) of II, m. 149-50°. V (13.2g.)in 3.5%absolute NH3EtOH heated 2 hrs. at 130-40° in a sealed tube yielded 6.3 g. II, m. 303° (decomposition) (H2O). II (5 g.) and 200 cc. Ac2O refluxed about 5 hrs. gave 5.2 g. III, m. 149.5-50.5°. V (1.62 g.) in 25 cc. 7% absolute alc. MeNH2 refluxed 3 hrs. yielded 1.45 g. Ia (R = Me) (VI), m. 156-7° (EtOH). VI (5 g.) in 50 cc. HCO2Ac kept 20 hrs. at room temperature and concentrated yielded 5 g. the N-CHO derivative (VII), m. 142.5-3.5° (EtOH). VI (10 g.) in 200 cc. Ac2O heated 1 hr. at 90-100° gave 8.2 g. the N-Ac derivative (VIII), m. 168-9° (BuOH or dioxane). V (1.62 g.) in 37 cc. 7% absolute alc. EtNH2 refluxed 3 hrs. and refrigerated overnight yielded 1.6 g. Ia (R = Et), m. 161-2° (dioxane). In the same manner were prepared the following Ia (R, m.p., and % yield given): Pr, 114-18° (dioxan-epetr. ether), 92; Bu, 101-6° (dioxane-petr. ether), 61; PhCH2, 132-3° (EtOH), 90. Also prepared was the N-Me derivative of VI, m. 94-5.5° (C6H6-petr. ether), 47% yield. II (0.76 g.) in 30 cc. 85% HCO2H hydrogenated 4 hrs. at 17°/756 mm. over 0.2 g. PtO2 yielded a black-brown oil, which treated with dilute aqueous NaOH liberated NH3. III (0.5 g.) in 45 cc. absolute BuOH hydrogenated 40 min. at 17°/770 mm. over 0.2 g. PtO2, and the resulting oily product in C6H6 treated with the stoichiometric amount picric acid yielded 1-methyl-4-amino-5-(N,N-diacetylamino)imidazole picrate, m. 160-1° (decomposition) (BuOH). The BuOH solution from a duplicate run refluxed 1.5 hrs. under argon gave only a brown, flocculent precipitate Hydrogenation of 0.5 g. VI in H2O, dilute HCl, dry dioxane, AcOH, AcOH-HCl, and Ac2O over 0.2 g. PtO2 gave only oily unstable materials. VII (0.6 g.) in 100 cc. Bu0H hydrogenated 50 min. at 18°/763 mm., and the resulting yellow oil treated in EtOH with picric acid gave the picrate of 1-methyl-4-amino-5-(N-methyl-N-formylamino)imidazole (IX), m. 173-70 (decomposition) (H2O); styphnate m. 177-8.5° (decomposition) (H2O). The BuOH solution of the crude IX refluxed 2 hrs. under argon yielded a brown, flocculent precipitate VIII (2 g.) in 120 cc. BuOH hydrogenated 1 hr. at 20°/755 mm. over 0.4 g. PtO2 yielded 1.4 g. 5-AcMeN analog (X) of IX, m. 165-6° ( PhCl); picrate m. 217-21° (decomposition) (H2O); styphnate m. 196-9° (decomposition) (H2O); HCl salt m. 225-6° (decomposition). All attempted cyclizations of X were unsuccessful. X (0.5 g.) in 3 cc. absolute HCO2H refluxed 1.5 hrs. yielded 0.4 g. 1-methyl-4-formyl-amino-5-(N-methyl-N-acetylamino)imidazole (XI), m. 154-5.5° (absolute EtOH-Et2O). X (2.1 g.) in 15 cc. AcOH refluxed 0.5 hr. yielded 1.47 g. 4-AcNH analog of XI, m. 188.5-9.5° (1:1 dioxane-PhCl); picrate m. 166-9° (EtOH); all attempted cyclizations were unsuccessful.

Here is just a brief introduction to this compound(4531-54-8)Quality Control of 1-Methyl-4-nitro-1H-imidazol-5-amine, more information about the compound(1-Methyl-4-nitro-1H-imidazol-5-amine) is in the article, you can click the link below.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

New explortion of 4531-54-8

Here is just a brief introduction to this compound(4531-54-8)Name: 1-Methyl-4-nitro-1H-imidazol-5-amine, more information about the compound(1-Methyl-4-nitro-1H-imidazol-5-amine) is in the article, you can click the link below.

Epoxy compounds usually have stronger nucleophilic ability, because the alkyl group on the oxygen atom makes the bond angle smaller, which makes the lone pair of electrons react more dissimilarly with the electron-deficient system. Compound: 1-Methyl-4-nitro-1H-imidazol-5-amine, is researched, Molecular C4H6N4O2, CAS is 4531-54-8, about A catalyst and additive-free three-component reaction of highly electrophilic azides with cyclic ketones and cycloaliphatic amines. Synthesis of novel N-heteroaryl amidines.Name: 1-Methyl-4-nitro-1H-imidazol-5-amine.

Highly electrophilic 5-azido-1-methyl-4-nitro-1H-imidazole and sulfonyl azides were demonstrated to react with alicyclic amines and cyclic ketones in the absence of any catalyst or additive to afford novel N-(4-nitroimidazol-5-yl)- or N-sulfonylamidines resp. Based on single crystal X-ray anal., a revision of the previously reported data of Gao and co-workers on the direction of the reaction of sulfonyl azides with endocyclic enamines was made. The reaction of 2,6-diazidopyridine with an enamine, 4-(cyclohex-1-en-1-yl)morpholine, proceeded with cyclization of the azide moiety onto the pyridine C=N bond to form an amidine bearing the tetrazolo[1,5-a]pyridine fragment.

Here is just a brief introduction to this compound(4531-54-8)Name: 1-Methyl-4-nitro-1H-imidazol-5-amine, more information about the compound(1-Methyl-4-nitro-1H-imidazol-5-amine) is in the article, you can click the link below.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

The important role of 4531-54-8

There are many compounds similar to this compound(4531-54-8)Name: 1-Methyl-4-nitro-1H-imidazol-5-amine. if you want to know more, you can check out my other articles. I hope it will help you,maybe you’ll find some useful information.

Heterocyclic compounds can be divided into two categories: alicyclic heterocycles and aromatic heterocycles. Compounds whose heterocycles in the molecular skeleton cannot reflect aromaticity are called alicyclic heterocyclic compounds. Compound: 4531-54-8, is researched, Molecular C4H6N4O2, about Synthesis of imidazo[4,5-b]pyrazine nucleosides, the main research direction is imidazopyrazine nucleoside.Name: 1-Methyl-4-nitro-1H-imidazol-5-amine.

5,6-Dimethyl-1-(β-D-ribofuranosyl)imidazo[4,5-b]pyrazine (I; R = β-D-ribofuranosyl) was prepared by glycosylation of the Me3Si derivative (I; R = Me3Si) (II), by fusion with 1-O-acetyl-2,3,5-tri-O-benzoyl-β-D-ribofuranose, or by cycloaddition of 4,5-diamino-1-(β-D-ribofuranosyl)-imidazole with biacetyl.

There are many compounds similar to this compound(4531-54-8)Name: 1-Methyl-4-nitro-1H-imidazol-5-amine. if you want to know more, you can check out my other articles. I hope it will help you,maybe you’ll find some useful information.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Can You Really Do Chemisty Experiments About 4531-54-8

There are many compounds similar to this compound(4531-54-8)Synthetic Route of C4H6N4O2. if you want to know more, you can check out my other articles. I hope it will help you,maybe you’ll find some useful information.

The chemical properties of alicyclic heterocycles are similar to those of the corresponding chain compounds. Compound: 1-Methyl-4-nitro-1H-imidazol-5-amine, is researched, Molecular C4H6N4O2, CAS is 4531-54-8, about Solvatochromism of Heteroaromatic Compounds: XIV. 5-Amino-1-methyl-4-nitropyrazole and Its Analogs, the main research direction is solvatochromism heteroaromatic aminomethylnitropyrazole.Synthetic Route of C4H6N4O2.

The solvatochromism of H complexes of 5-amino-1-methyl-4-nitropyrazole and 2-nitroaniline derivatives in aprotic protophilic media was described on a quant. level with the aid of Kamlet-Taft empirical parameters. Specific solvation affects only one of the two long-wave bands, that corresponding to an electronic transition involving orbital electron d. transfer from the H-bound N atom. When such transfer does not occur, which is typical of the second transition, specific solvatochromic effect is either weak or absent.

There are many compounds similar to this compound(4531-54-8)Synthetic Route of C4H6N4O2. if you want to know more, you can check out my other articles. I hope it will help you,maybe you’ll find some useful information.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

An update on the compound challenge: 4531-54-8

I hope my short article helps more people learn about this compound(1-Methyl-4-nitro-1H-imidazol-5-amine)Quality Control of 1-Methyl-4-nitro-1H-imidazol-5-amine. Apart from the compound(4531-54-8), you can read my other articles to know other related compounds.

Quality Control of 1-Methyl-4-nitro-1H-imidazol-5-amine. The mechanism of aromatic electrophilic substitution of aromatic heterocycles is consistent with that of benzene. Compound: 1-Methyl-4-nitro-1H-imidazol-5-amine, is researched, Molecular C4H6N4O2, CAS is 4531-54-8, about A catalyst and additive-free three-component reaction of highly electrophilic azides with cyclic ketones and cycloaliphatic amines. Synthesis of novel N-heteroaryl amidines. Author is Efimov, Ilya; Beliaev, Nikolai; Beryozkina, Tetyana; Slepukhin, Pavel; Bakulev, Vasiliy.

Highly electrophilic 5-azido-1-methyl-4-nitro-1H-imidazole and sulfonyl azides were demonstrated to react with alicyclic amines and cyclic ketones in the absence of any catalyst or additive to afford novel N-(4-nitroimidazol-5-yl)- or N-sulfonylamidines resp. Based on single crystal X-ray anal., a revision of the previously reported data of Gao and co-workers on the direction of the reaction of sulfonyl azides with endocyclic enamines was made. The reaction of 2,6-diazidopyridine with an enamine, 4-(cyclohex-1-en-1-yl)morpholine, proceeded with cyclization of the azide moiety onto the pyridine C=N bond to form an amidine bearing the tetrazolo[1,5-a]pyridine fragment.

I hope my short article helps more people learn about this compound(1-Methyl-4-nitro-1H-imidazol-5-amine)Quality Control of 1-Methyl-4-nitro-1H-imidazol-5-amine. Apart from the compound(4531-54-8), you can read my other articles to know other related compounds.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem