The Best Chemistry compound: 616-14-8

This compound(1-Iodo-2-methylbutane)Recommanded Product: 616-14-8 was discussed at the molecular level, the effects of temperature and reaction time on the properties of the compound were discussed, and the optimum reaction conditions were selected.

In general, if the atoms that make up the ring contain heteroatoms, such rings become heterocycles, and organic compounds containing heterocycles are called heterocyclic compounds. An article called Application of multipurpose dimethyl formamide-like task specific ionic liquid as a recyclable reagent for direct iodination of alcohols, published in 2011, which mentions a compound: 616-14-8, Name is 1-Iodo-2-methylbutane, Molecular C5H11I, Recommanded Product: 616-14-8.

A direct and an efficient conversion of a wide range of primary, secondary and tertiary alcs. to the corresponding iodides was obtained under ionic liquid conditions. The method involves preparation of ionic liquid-based iminium chloride intermediate from DMF-like ionic liquid then stirring it with alc. in present of sodium iodide. The higher yields of alkyl iodides were obtained within min. time with simplest operational procedure and DMF-like ionic liquids could be recycled.

This compound(1-Iodo-2-methylbutane)Recommanded Product: 616-14-8 was discussed at the molecular level, the effects of temperature and reaction time on the properties of the compound were discussed, and the optimum reaction conditions were selected.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

The important role of 616-14-8

This compound(1-Iodo-2-methylbutane)Formula: C5H11I was discussed at the molecular level, the effects of temperature and reaction time on the properties of the compound were discussed, and the optimum reaction conditions were selected.

Formula: C5H11I. Aromatic heterocyclic compounds can also be classified according to the number of heteroatoms contained in the heterocycle: single heteroatom, two heteroatoms, three heteroatoms and four heteroatoms. Compound: 1-Iodo-2-methylbutane, is researched, Molecular C5H11I, CAS is 616-14-8, about Gamma radiolysis of branched chain hydrocarbons. 2,3-Dimethylbutane. Author is Castello, Gianrico; Grandi, Francesco; Munari, Stelio.

The γ-radiolysis of liquid 2,3-dimethylbutane at room temperature was investigated under vacuum. Iodine was used as a free radical scavenger and the formed alkyl iodides were analyzed by gas chromatog. with electron capture detector. Irradiations of frozen 2,3-dimethylbutane at 77°K were also performed. The fragmentation products and many of those having a number of C atoms higher than the parent were identified and measured. The formation of the identified heavy products is mainly due to recombination of radicals, as demonstrated by the comparison between their yields and those of alkyl iodides.

This compound(1-Iodo-2-methylbutane)Formula: C5H11I was discussed at the molecular level, the effects of temperature and reaction time on the properties of the compound were discussed, and the optimum reaction conditions were selected.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

A small discovery about 616-14-8

This compound(1-Iodo-2-methylbutane)Safety of 1-Iodo-2-methylbutane was discussed at the molecular level, the effects of temperature and reaction time on the properties of the compound were discussed, and the optimum reaction conditions were selected.

Safety of 1-Iodo-2-methylbutane. Aromatic heterocyclic compounds can also be classified according to the number of heteroatoms contained in the heterocycle: single heteroatom, two heteroatoms, three heteroatoms and four heteroatoms. Compound: 1-Iodo-2-methylbutane, is researched, Molecular C5H11I, CAS is 616-14-8, about Total Synthesis of (-)-Cylindrocyclophane F: A Yardstick for Probing New Catalytic C-C Bond-Forming Methodologies. Author is Berthold, Dino; Breit, Bernhard.

A short and efficient total synthesis of the C2-sym. (-)-cylindrocyclophane F is presented, using a cross olefin metathesis dimerization strategy for construction of the [7,7]-paracyclophane macrocycle. The synthesis of the dimerization building block includes a Pd-catalyzed sp3-sp2 Negishi cross coupling of a sterically hindered Zn-reagent with an aromatic triflate, an enantiospecific Zn-catalyzed sp3-sp3 cross coupling of an α-hydroxy ester triflate with a Grignard reagent and the application of an enantioselective Rh-catalyzed C-allylation of an electron rich arene.

This compound(1-Iodo-2-methylbutane)Safety of 1-Iodo-2-methylbutane was discussed at the molecular level, the effects of temperature and reaction time on the properties of the compound were discussed, and the optimum reaction conditions were selected.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Machine Learning in Chemistry about 616-14-8

This compound(1-Iodo-2-methylbutane)Electric Literature of C5H11I was discussed at the molecular level, the effects of temperature and reaction time on the properties of the compound were discussed, and the optimum reaction conditions were selected.

Bennett, Martin A.; Crisp, Geoffrey T. published the article 《Secondary to normal alkyl group rearrangements in octahedral iridium(III) complexes. 1. Monoalkyl derivatives》. Keywords: alkyl group isomerization iridium complex; solvent effect alkyl isomerization; substituent effect alkyl isomerization; steric hindrance alkyl isomerization.They researched the compound: 1-Iodo-2-methylbutane( cas:616-14-8 ).Electric Literature of C5H11I. Aromatic heterocyclic compounds can be divided into two categories: single heterocyclic and fused heterocyclic. In addition, there is a lot of other information about this compound (cas:616-14-8) here.

sec-Alkyliridium(III) complexes IrYIR(CO)L2 (R = sec-alkyl; Y = Cl, I; L = PMe3, PMe2Ph), formed by oxidative addition of sec-alkyl iodides to IrY(CO)L2, rearrange cleanly by a first-order process to the n-alkyl isomers on dissolution in CH2Cl2 containing protic solvents. The order of efficacy of these solvents in promoting alkyl group rearrangement is CF3CO2H >> CH3OH >> C2H5OH > CH3CO2H ∼ PrOH > (CH3)2CHOH, while in the more strongly coordinating medium of THF the order is H2O >> CH3OH. These orders correlate with the anion-solvating ability of the solvents and, together with the observed retardation by added iodide ion, suggest that the rate-determining step in the rearrangement is dissociation of iodide ion trans to the sec-alkyl group. Rapid, reversible β-hydride elimination in the resulting cation and stereospecific return of iodide ion trans to the resulting n-alkyl group complete the process. The rearrangement is promoted by increasing bulk, both of the alkyl group, up to a certain limit, and of the tertiary phosphine (PMe2Ph > PMe3). Treatment of IrClI{CH(CH3)2}(CO)(PMe2Ph)2 with AgBF4 in MeCN induces immediate alkyl group rearrangement to give the n-propyliridium(III) salt [IrClPr(CO)(NCMe)(PMe2Ph)2]BF4. Studies of analogous CD2CH3 compounds suggest that they, and presumably other n-alkyliridium(III) complexes, undergo reversible β-hydride elimination more slowly than the sec-alkyl complexes. The D labels in the isobutyl-d2 complex IrClI{CD2CH(CH3)2}(CO)(PMe3)2 scramble over all the alkyl C atoms when the compound is heated in CD2Cl2/CD3OD, indicating that a tert-butyliridium(III) species is accessible. Surprisingly, the complexes IrClI{CH2CH(CH3)CH2CH3}(CO)(PMe3)2 and IrClI{CH2CH2CH(CH3)2}(CO)(PMe3)2 do not interconvert under the same conditions, implying that a tert-pentylirdium(III) species cannot be formed. The results are compared with alkyl group rearrangements that occur in other transition-metal systems, especially those promoted by dissociation of Ph3P in (η-C5H5)FeR(CO)(PPh3).

This compound(1-Iodo-2-methylbutane)Electric Literature of C5H11I was discussed at the molecular level, the effects of temperature and reaction time on the properties of the compound were discussed, and the optimum reaction conditions were selected.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Archives for Chemistry Experiments of 616-14-8

This compound(1-Iodo-2-methylbutane)Synthetic Route of C5H11I was discussed at the molecular level, the effects of temperature and reaction time on the properties of the compound were discussed, and the optimum reaction conditions were selected.

Heterocyclic compounds can be divided into two categories: alicyclic heterocycles and aromatic heterocycles. Compounds whose heterocycles in the molecular skeleton cannot reflect aromaticity are called alicyclic heterocyclic compounds. Compound: 616-14-8, is researched, Molecular C5H11I, about Gas chromatography of isomeric pentyl halides, the main research direction is GAS CHROMATOG PENTYL HALIDE; CHROMATOG GAS PENTYL HALIDE; PENTYL HALIDE GAS CHROMATOG; HALIDE PENTYL GAS CHROMATOG.Synthetic Route of C5H11I.

Isomeric pentyl halides were separated by gas chromatog. Two columns were used: a 4 m. × 1/16-in. outer diameter stainless steel column packed with 10% squalane on 80-100-mesh Chromosorb W, N as the carrier at 13-15 ml./min. (column 1), and a 4-m. × 1/8-in. outer diameter stainless steel column packed with 11.5% Bentone 34 + 11.5% silicone MS 555 on 80-100-mesh Chromosorb W, N as the carrier at 25-30 ml./min. (column 2). On column 1, chlorides were analyzed at 20°, bromides and iodides at 40°; on column 2, all analyses were at 40°. A flame ionization detector was used with both columns. tert-Pentyl bromide and iodide decomposed in column 2 although not on column 1. The 3-halogenopentanes were the only isomers that could not be completely separated from all other pentyl structures.

This compound(1-Iodo-2-methylbutane)Synthetic Route of C5H11I was discussed at the molecular level, the effects of temperature and reaction time on the properties of the compound were discussed, and the optimum reaction conditions were selected.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Brief introduction of 616-14-8

This compound(1-Iodo-2-methylbutane)Category: thiomorpholine was discussed at the molecular level, the effects of temperature and reaction time on the properties of the compound were discussed, and the optimum reaction conditions were selected.

Category: thiomorpholine. The protonation of heteroatoms in aromatic heterocycles can be divided into two categories: lone pairs of electrons are in the aromatic ring conjugated system; and lone pairs of electrons do not participate. Compound: 1-Iodo-2-methylbutane, is researched, Molecular C5H11I, CAS is 616-14-8, about Application of multipurpose dimethyl formamide-like task specific ionic liquid as a recyclable reagent for direct iodination of alcohols. Author is Hullio, Ahmed Ali; Mastoi, G. M..

A direct and an efficient conversion of a wide range of primary, secondary and tertiary alcs. to the corresponding iodides was obtained under ionic liquid conditions. The method involves preparation of ionic liquid-based iminium chloride intermediate from DMF-like ionic liquid then stirring it with alc. in present of sodium iodide. The higher yields of alkyl iodides were obtained within min. time with simplest operational procedure and DMF-like ionic liquids could be recycled.

This compound(1-Iodo-2-methylbutane)Category: thiomorpholine was discussed at the molecular level, the effects of temperature and reaction time on the properties of the compound were discussed, and the optimum reaction conditions were selected.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Final Thoughts on Chemistry for 616-14-8

This compound(1-Iodo-2-methylbutane)Computed Properties of C5H11I was discussed at the molecular level, the effects of temperature and reaction time on the properties of the compound were discussed, and the optimum reaction conditions were selected.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Asymmetric reductions. VI. The action of the Grignard reagent from (+)-1-chloro-2-methylbutane on a series of alkyl tert-butyl ketones》. Authors are Foley, William M.; Welch, Frank J.; Combe, Edward M. La; Mosher, Harry S..The article about the compound:1-Iodo-2-methylbutanecas:616-14-8,SMILESS:CCC(CI)C).Computed Properties of C5H11I. Through the article, more information about this compound (cas:616-14-8) is conveyed.

cf. C.A. 51, 1828h. Title reactions were carried out with six ketones, and the % asymmetric reduction, i, was determined by comparing the observed rotation of each resulting carbinol with the maximum rotation of pure isomers obtained by resolution. The absolute configurations of the prepared carbinols were determined and R, [α]25D (neat), and i were as follows: Me, 0.63°, 13.4; iso-Pr, -0.38°, 4.6; Et, -2.94°, 10.7; Pr, -3.87°, 11.3; Bu, -3.78°, 11.0; and iso-Bu, -2.56°, 5.9. The results agreed with a reaction mechanism of Grignard reduction involving an intermediate cyclic six-membered transition state in which stereospecificity was controlled by steric interaction of the alkyl and tert-butyl groups of the ketones and the Me and Et groups of the Grignard reagent. The alkyl tert-butyl ketones were prepared by coupling the appropriate acid chloride, RCOCl, with the Grignard reagent from freshly distilled tert-BuCl in the presence of Cu2Cl2 to yield the following products (R, % yield based on Grignard reagent, b.p., and n25D given): Me, 33, 105.2°, 1.3974; Et, 89, 125.0-5.8°, 1.4049-51; Pr, 63, 145.0-5.8°, 1.4109-11; iso-Pr, 36, 135.2-6.7°, 1.4049-68; Bu, 69, 167.0-9.0°, 1.4149-59; and iso-Bu, 40, 155.5-7.0°, 1.4135-42. Only the Me and Pr tert-butylcarbinols were resolved in earlier work, and the resolution of the remaining four, by classical methods (Ingersoll, C.A. 38, 29257), is reported here. Racemic tert-BuCHEtOH (I), b. 136°, n20D 1.4235, was converted to the dl-acid phthalate, m. 88.0-8.3°. By procedures involving brucine and recrystallizations the (-)-acid phthalate (II) was obtained, m. 91.0-1.5°, [α]27D -3.75° (c 20.5, CHCl3), the rotation in CHCl3 being concentration dependent, 2.2° (c 1.5). (+)-I was regenerated from II, n20D 1.4230, α23D 27.40° (neat, l 1); acetate from (+)-I b38 74°, α24D 12.16° (neat, l 0.5), d23 0.856; benzoate from (-)-I b0.8 20°, α25D -3.19° (neat, l 0.5), n20D 1.4912, d23 0.957. Racemic tert-BuCH(OH)Pr-iso (III), b. 150.9-1.1°, n20D 1.4290-9, gave the dl-acid phthalate, m. 114.5-16.0°. The brucine salt was prepared and a less soluble form obtained, m. 173-5°, [α]28D -23°, which on hydrolysis gave an acid phthalate (IV), m. 100.5-3.0°, [α]25D 0.00°, which was hydrolyzed to (-)-III, α28D -7.22° (neat, l 1). Hydrolysis of the more soluble form of the brucine salt, [α]28D -16.1°, gave an acid phthalate (V), [α]28D 0.00°, which on hydrolysis gave (+)-III, α28D 7.22° (neat, l 1). The strychnine salt of IV was also prepared, [α]28D -25.7°, the acid phthalate regenerated, and converted to (-)-III, α28D -8.94° (neat, l 1), n20D 1.4300. The cinchonine salt of V was prepared, m. 144-7° (decomposition), [α]28D 106°, from which an acid phthalate was regenerated, m. 105.5-7.0°, and hydrolyzed to (+)-III, α28D 9.06° (neat, l 1). These latter values of -8.94° for (-)-III and 9.06° for (+)-III were considered best values. Also prepared were acetate of (+)-III, b155 130°, n21D 1.4166, α28D -1.44° (neat, l 1), and benzoate of (+)-III, b32 195°, n19D 1.4969, α25D -0.16° (neat, l 1). Racemic tert-BuCH(OH)Bu-iso (VI), b150 115-16°, n25D 1.4309, m. 17°, gave acid phthalate (VII), m. 83.5-4.5°. Strychnine was used in the resolution and eventually (+)-VII was obtained, m. 75.6-7.5°, [α]23D 8.7° (c 1.5, CHCl3), hydrolyzed to (+)-VI, m. 40-1°, α26D 57.5° (c 20.4, MeOH), and α23D 54.5° (neat, by extrapolation of rotation-concentration curve); acetate of (+)-VI b17 73°, α22D 15.15° (neat, l 0.5), n20D 1.4176, d22 0.852; benzoate of (+)-VI b0.6 88°, α25D 8.24° (neat, l 0.5), n20D 1.4870, d25 0.955. Racemic tert-BuCHBuOH (VIII), n20D 1.4320, was converted to acid phthalate (IX), m. 100.5-2.0°, and then to the strychnine salt. The regenerated (+)-IX was a glass, α23D 4.5° (c 2.8, CHCl3), which was saponified to (+)-VIII, n20D 1.4314, α24D 17.10° (neat, l 0.5). The (-)-phthalate from the more soluble fractions of strychnine salt gave (-)-VIII, α24D -16.39° (neat, l 0.5). The dl-tetrachlorophthalate of VIII was also prepared, m. 126-8°, converted to the strychnine salt, and the less soluble form, [α]25D -12°, hydrolyzed to (-)-acid tetrachlorophthalate, α22D -9.69°, which was saponified to (+)-VIII, α22D 13.70° (neat, l 0.5); 3,5-dinitrobenzoate (X) of (+)-VIII m. 107.5° (MeOH), α25D 10.0° (c 2.4, CHCl3); 3,5-dinitrobcnzoate of dl-VIII, m. 84.0-4.5°. X was saponified to (+)-VIII, b23 76°, α25D 17.12° (neat, l 0.5), n20D 1.4310, d26 0.823. The value for pure (+)-VIII was taken as α25D 34.24° (neat, l 1). From (-)-VIII, α25D -32.8° (neat, l 1), was prepared: acetate, b20 87°, α26D -11.25° (neat, l 0.5), n20D 1.4191, d26 0.851; benzoate, b0.5 98°, α25D -7.29° (neat, l 0.5), n20D 1.4887, d25 0.936; p-nitrobenzoate, b0.5 144-5°, α29D -12.50°, n25D 1.5070. Some work was done with the Grignard reagents of the following prepared compounds: (+)-1-bromo-2-methylbutane, b100 60.8°, n20D 1.4453, α24D 4.22° (neat, l 1), 84% optical purity, a 2nd preparation b100 57-8°, α26.6D 4.66°, 93% optical purity; and (+)-1-iodo-2-methytbutane, n20D 1.4955-69, α21D 8.65° (neat, l 1), 98.5% optical purity, 2nd preparation b53 70°, n20D 1.4969-72, α25D 16.8° (neat, l 2), optical purity 96.5%.

This compound(1-Iodo-2-methylbutane)Computed Properties of C5H11I was discussed at the molecular level, the effects of temperature and reaction time on the properties of the compound were discussed, and the optimum reaction conditions were selected.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Now Is The Time For You To Know The Truth About 616-14-8

This compound(1-Iodo-2-methylbutane)Related Products of 616-14-8 was discussed at the molecular level, the effects of temperature and reaction time on the properties of the compound were discussed, and the optimum reaction conditions were selected.

So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic.Olah, George A.; Welch, John researched the compound: 1-Iodo-2-methylbutane( cas:616-14-8 ).Related Products of 616-14-8.They published the article 《Synthetic methods and reactions. XIII. Preparation of alkyl halides from alcohols with alkali halides in polyhydrogen fluoride/pyridine solution》 about this compound( cas:616-14-8 ) in Synthesis. Keywords: halide alkyl cycloalkyl adamantyl; benzyl halide; norbornyl halide. We’ll tell you more about this compound (cas:616-14-8).

Thirty-nine RX (R = C4-8 alkyl, cyclopentyl, cyclohexyl, adamantyl, norbornyl, PhCH2; X = F, Cl, Br, I) were prepared by reaction of the corresponding ROH with MX (M = Na, K, NH4) in polyhydrogen fluoridepyridine. Thus, BuCH2OH was kept 1 hr with 70% HF-pyridine containing NaCl to give 89% BuCH2Cl.

This compound(1-Iodo-2-methylbutane)Related Products of 616-14-8 was discussed at the molecular level, the effects of temperature and reaction time on the properties of the compound were discussed, and the optimum reaction conditions were selected.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Downstream Synthetic Route Of 616-14-8

This compound(1-Iodo-2-methylbutane)Name: 1-Iodo-2-methylbutane was discussed at the molecular level, the effects of temperature and reaction time on the properties of the compound were discussed, and the optimum reaction conditions were selected.

Zhang, Bi-cheng; Yang, Bo; Liu, Jian; Guan, Sha; Rao, Zhi-guo; Gao, Jian-fei published the article 《Phenotype identification of tumor-associated macrophages in mice bearing lung carcinoma》. Keywords: phenotype macrophage lung carcinoma.They researched the compound: 1-Iodo-2-methylbutane( cas:616-14-8 ).Name: 1-Iodo-2-methylbutane. Aromatic heterocyclic compounds can be divided into two categories: single heterocyclic and fused heterocyclic. In addition, there is a lot of other information about this compound (cas:616-14-8) here.

Objective To identify the phenotype of tumor-associated macrophages (TAM) in mice bearing Lewis lung carcinoma (LLC). Methods LLC cells were planted in the dorsal necks of C57BL/6 mice s.c. The levels of Th1/Th2 cytokines in the transplantation tumors were tested by ELISA. Co-expression of CD68/macrophage mannose receptor (MMR) and CD68/inducible nitric oxide synthase (iNOS) of TAM was detected by double-labeled immunofluorescence staining. Phagocytic capacity of TAM was assessed by yeast phagocytosis assay. Results In the mice LLC transplantation tumors, Th2 cytokine shift was found in the microenvironment. The concentrations of IFN-γ and IL-12 were (2.19 ±> 0.34) ng/mL and (1635.92 ±> 754.86) ng/mL in transplantation tumors, lower than (5.49 ±> 1.04) ng/mL and (6161.48 ±>498.49) ng/mL in normal lung tissues (P <0.05). IL-4 and IL-10 were (29.31 ±> 14.47) ng/mL and (21.54 ±> 10.72) ng/mL in transplantation tumors, higher than (16.43 ±>6.31) ng/mL and (10.71 ±>2.02) ng/mL in normal lung tissues (P <0.05). The percentage of CD68/MMR(+) TAM in all the TAM was 69.7%-83.2%, while CD68/iNOS (+) was 16.8%-30.3%. The phagocytic rate and index of the transplantation tumors were (5.42 ±> 1.74)% and 0.08 ±>0.02, much lower than (23.63 ±> 5.81)% and 0.39 ±>0.14 in normal spleen tissues with statistical significance (P <0.01). Conclusion TAM in mice bearing LLC might be polarized to the alternative activation phenotype. This compound(1-Iodo-2-methylbutane)Name: 1-Iodo-2-methylbutane was discussed at the molecular level, the effects of temperature and reaction time on the properties of the compound were discussed, and the optimum reaction conditions were selected.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Research on new synthetic routes about 616-14-8

This compound(1-Iodo-2-methylbutane)Name: 1-Iodo-2-methylbutane was discussed at the molecular level, the effects of temperature and reaction time on the properties of the compound were discussed, and the optimum reaction conditions were selected.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Primary active amyl halides》. Authors are Whitmore, Frank C.; Olewine, J. Harris.The article about the compound:1-Iodo-2-methylbutanecas:616-14-8,SMILESS:CCC(CI)C).Name: 1-Iodo-2-methylbutane. Through the article, more information about this compound (cas:616-14-8) is conveyed.

Primary active AmOH (I) with SOCl2 in C5H5N give 77% of the AmCl, b140 50.5-1°, nD20 1.4125, n420 0.8852, [α]D28.5 1.66°. I and PBr3 at 5-15° give 29% of the AmBr, b140 69.6°, nD20 1.4450, d420 1.2239, [α]D25 3.75°. I and BzCl give 80% of the benzoate, b20 140.2°, nD20 1.4948, d420 0.9913, [α]D28 6.09°; with MeMgI this yields 17.5% of the AmI, b20 47.1°, nD20 1.4969, d42 1.5227, [α]D28 4.84°. Data are given for the constants of I after regeneration from the chloride or bromide through the Grignard reagents; the total racemization in the steps I → AmCl or AmBr → Grignard reagent → I is not over 10%.

This compound(1-Iodo-2-methylbutane)Name: 1-Iodo-2-methylbutane was discussed at the molecular level, the effects of temperature and reaction time on the properties of the compound were discussed, and the optimum reaction conditions were selected.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem